Production programming in the manufacturing industry
Abstract
This research studies the Flow shop - Job shop methodologies, which play a fundamental role in the reduction of costs in factories when planning the production sequence. The selection methodology of articles used in this research took into account that the papers were indexed or approved, in addition to being in a range of no more than ten years of publication. The research results showed a higher percentage of articles on the job shop methodology. We concluded that minimizing production costs is the main objective of production scheduling based on Flow shop - Job shop methodologies. However, in the last decade, the objective has been focused on reducing energy costs since they allow to evaluate the processes to program when to turn on or off a machine.
Keywords
Full Text:
PDFReferences
L. Krajewski, L. Ritzman, and M. Malhotra, “Administración de operaciones Procesos y cadenas de valor,” Pearson Educ., vol. 8, p. 752, 2008.
CHASE, planeación y programación de la producción.
J. C. Serrano-ruiz, J. Mula, and R. Poler, “Development of a multidimensional conceptual model for job shop smart manufacturing scheduling from the Industry 4 . 0 perspective,” J. Manuf. Syst., vol. 63, no. March, pp. 185–202, 2022, doi: 10.1016/j.jmsy.2022.03.011.
C. D. Conference, Y. Hsu, P. S. E-mail, A. Etienne, and A. Siadat, “Real-time resilient scheduling by digital twin technology in a flow-shop manufacturing system,” Procedia CIRP, vol. 107, no. 2021, pp. 668–674, 2022, doi: 10.1016/j.procir.2022.05.043.
R. Murphy, P. Stief, J. Dantan, A. Etienne, and A. Siadat, “Machine learning technologies for order flowtime estimation in manufacturing systems,” Procedia CIRP, vol. 81, pp. 701–706, 2019, doi: 10.1016/j.procir.2019.03.179.
P. Coelho, A. Pinto, S. Moniz, and C. Silva, “Thirty Years of Flexible Job-Shop Scheduling: A Bibliometric Study,” Procedia Comput. Sci., vol. 180, no. 2019, pp. 787–796, 2021, doi: 10.1016/j.procs.2021.01.329.
T. Kocsis, S. Negny, P. Floquet, X. Meyer, and E. Rév, “Case-Based Reasoning system for mathematical modelling options and resolution methods for production scheduling problems: Case representation, acquisition and retrieval,” Comput. Ind. Eng., vol. 77, pp. 46–64, 2014, doi: 10.1016/j.cie.2014.09.012.
N. I. Zulkafli, D. P. Hanak, and G. M. Kopanos, “Efficient decomposition strategy for scheduling of multistage production system and combined heat and power,” Comput. Chem. Eng., vol. 133, p. 106634, 2020, doi: 10.1016/j.compchemeng.2019.106634.
J. Vallhagen, T. Almgren, and K. Thörnblad, “Advanced use of Data as an Enabler for Adaptive Production Control using Mathematical Optimization – An Application of Industry 4.0 Principles,” Procedia Manuf., vol. 11, no. June, pp. 663–670, 2017, doi: 10.1016/j.promfg.2017.07.165.
P. Coelho and C. Silva, “Parallel Metaheuristics for Shop Scheduling: Enabling Industry 4.0,” Procedia Comput. Sci., vol. 180, pp. 778–786, 2021, doi: 10.1016/j.procs.2021.01.328.
G. Egger, D. Chaltsev, A. Giusti, and D. T. Matt, “A deployment-friendly decentralized scheduling approach for cooperative multi-agent systems in production systems,” Procedia Manuf., vol. 52, pp. 127–132, 2020, doi: 10.1016/j.promfg.2020.11.023.
L. Leenders, K. Ganz, B. Bahl, M. Hennen, N. Baumgärtner, and A. Bardow, “Scheduling coordination of multiple production and utility systems in a multi-leader multi-follower Stackelberg game,” Comput. Chem. Eng., vol. 150, p. 107321, 2021, doi: 10.1016/j.compchemeng.2021.107321.
C. D. Hubbs, C. Li, N. V. Sahinidis, I. E. Grossmann, and J. M. Wassick, “A deep reinforcement learning approach for chemical production scheduling,” Comput. Chem. Eng., vol. 141, p. 106982, 2020, doi: 10.1016/j.compchemeng.2020.106982.
H. F. Rahman, R. Sarker, and D. Essam, “A genetic algorithm for permutation flow shop scheduling under make to stock production system,” Comput. Ind. Eng., vol. 90, pp. 12–24, 2015, doi: 10.1016/j.cie.2015.08.006.
I. Saraçoǧlu and G. A. Süer, “Multi-Objective Fuzzy Flow Shop Scheduling Model in a Manufacturing Company,” Procedia Manuf., vol. 17, pp. 214–221, 2018, doi: 10.1016/j.promfg.2018.10.039.
J. Pempera, C. Smutnicki, and R. Wójcik, “Minimizing the cycle time in the distributed flow shop scheduling problem,” IFAC-PapersOnLine, vol. 54, no. 1, pp. 1081–1086, 2021, doi: 10.1016/j.ifacol.2021.08.203.
M. M. Aghelinejad, O. Masmoudi, Y. Ouazene, and A. Yalaoui, “Multi-state two-machine permutation flow shop scheduling optimisation with time-dependent energy costs,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 11156–11161, 2020, doi: 10.1016/j.ifacol.2020.12.291.
M. Liu and X. Yang, “Bi-objective optimization for Scheduling and Multi-skilled Worker Assignments in the Hybrid Flow Shop,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 2128–2133, 2019, doi: 10.1016/j.ifacol.2019.11.520.
G. Wang, X. Li, L. Gao, and P. Li, “A Multi-Objective Whale Swarm Algorithm for Energy-Efficient Distributed Permutation Flow shop Scheduling Problem with Sequence Dependent Setup Times,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 235–240, 2019, doi: 10.1016/j.ifacol.2019.11.142.
I. Ferretti and L. E. Zavanella, “Batch energy scheduling problem with no-wait/blocking constraints for the general flow-shop problem,” Procedia Manuf., vol. 42, no. 2019, pp. 273–280, 2020, doi: 10.1016/j.promfg.2020.02.097.
F. Dang, W. Li, and H. Ye, “An efficient constructive heuristic to balance trade-offs between makespan and flowtime in permutation flow shop scheduling,” Procedia Manuf., vol. 26, pp. 40–48, 2018, doi: 10.1016/j.promfg.2018.07.005.
L. A. Bewoor, V. C. Prakash, and S. U. Sapkal, “Production scheduling optimization in foundry using hybrid Particle Swarm Optimization algorithm,” Procedia Manuf., vol. 22, pp. 57–64, 2018, doi: 10.1016/j.promfg.2018.03.010.
C. Silva et al., “A comparison of production control systems in a flexible flow shop,” Procedia Manuf., vol. 13, pp. 1090–1095, 2017, doi: 10.1016/j.promfg.2017.09.169.
A. Nahhas, A. Kharitonov, A. Alwadi, and K. Turowski, “Hybrid Approach for Solving Multi-Objective Hybrid Flow Shop Scheduling Problems with Family Setup Times,” Procedia Comput. Sci., vol. 200, no. 2019, pp. 1685–1694, 2022, doi: 10.1016/j.procs.2022.01.369.
P. Winklehner and V. A. Hauder, “Flexible job-shop scheduling with release dates, deadlines and sequence dependent setup times: A real-world case,” Procedia Comput. Sci., vol. 200, no. 2019, pp. 1654–1663, 2022, doi: 10.1016/j.procs.2022.01.366.
J. Ren, C. Ye, and F. Yang, “Solving flow-shop scheduling problem with a reinforcement learning algorithm that generalizes the value function with neural network,” Alexandria Eng. J., vol. 60, no. 3, pp. 2787–2800, 2021, doi: 10.1016/j.aej.2021.01.030.
F. Jolai, H. Asefi, M. Rabiee, and P. Ramezani, “Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem,” Sci. Iran., vol. 20, no. 3, pp. 861–872, 2013, doi: 10.1016/j.scient.2012.10.044.
H. Piroozfard, K. Y. Wong, and A. D. Asl, “An improved biogeography-based optimization for achieving optimal job shop scheduling solutions,” Procedia Comput. Sci., vol. 115, pp. 30–38, 2017, doi: 10.1016/j.procs.2017.09.073.
Q. Liu, Q. K. Pan, L. Gao, and X. Li, “Multi-objective flexible job shop scheduling problem considering machine switching off-on operation,” Procedia Manuf., vol. 39, no. 2019, pp. 1167–1176, 2019, doi: 10.1016/j.promfg.2020.01.353.
S. Shoval and M. Efatmaneshnik, “A probabilistic approach to the Stochastic Job-Shop Scheduling problem,” Procedia Manuf., vol. 21, no. 2017, pp. 533–540, 2018, doi: 10.1016/j.promfg.2018.02.154.
R. Sahraeian and M. Namakshenas, “On the optimal modeling and evaluation of job shops with a total weighted tardiness objective: Constraint programming vs. mixed integer programming,” Appl. Math. Model., vol. 39, no. 2, pp. 955–964, 2015, doi: 10.1016/j.apm.2014.07.032.
S. Jungbluth, N. Gafur, J. Popper, V. Yfantis, and M. Ruskowski, “Reinforcement Learning-based Scheduling of a Job-Shop Process with Distributedly Controlled Robotic Manipulators for Transport Operations,” IFAC-PapersOnLine, vol. 55, no. 2, pp. 156–162, 2022, doi: 10.1016/j.ifacol.2022.04.186.
W. R. Jong, H. T. Chen, Y. H. Lin, Y. W. Chen, and T. C. Li, “The multi-layered job-shop automatic scheduling system of mould manufacturing for Industry 3.5,” Comput. Ind. Eng., vol. 149, p. 106797, 2020, doi: 10.1016/j.cie.2020.106797.
A. Kinast, K. F. Doerner, and S. Rinderle-Ma, “Combing metaheuristics and process mining: Improving cobot placement in a combined cobot assignment and job shop scheduling problem,” Procedia Comput. Sci., vol. 200, pp. 1836–1845, 2022, doi: 10.1016/j.procs.2022.01.384.
A. Kinast, K. F. Doerner, S. Rinderle-Ma, and A. Kinast, “Biased random-key genetic algorithm for cobot assignment in an assembly/disassembly job shop scheduling problem,” Procedia Comput. Sci., vol. 180, no. 2019, pp. 328–337, 2021, doi: 10.1016/j.procs.2021.01.170.
F. Psarommatis, M. Vuichard, and D. Kiritsis, “Improved heuristics algorithms for re-scheduling flexible job shops in the era of zero defect manufacturing,” Procedia Manuf., vol. 51, pp. 1485–1490, 2020, doi: 10.1016/j.promfg.2020.10.206.
S. Karimi, Z. Ardalan, B. Naderi, and M. Mohammadi, “Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm,” Appl. Math. Model., vol. 41, pp. 667–682, 2017, doi: 10.1016/j.apm.2016.09.022.
A. Bader, J. Kaufmann, and K. Tracht, “Order classification in inventory planning of job shop production,” Procedia Manuf., vol. 49, pp. 180–184, 2020, doi: 10.1016/j.promfg.2020.07.016.
K. Morikawa, K. Nagasawa, and K. Takahashi, “Job shop scheduling by branch and bound using genetic programming,” Procedia Manuf., vol. 39, no. 2019, pp. 1112–1118, 2019, doi: 10.1016/j.promfg.2020.01.359.
J. Xie, L. Gao, Q. K. Pan, and M. Fatih Tasgetiren, “An effective multi-objective artificial bee colony algorithm for energy efficient distributed job shop scheduling,” Procedia Manuf., vol. 39, no. 2019, pp. 1194–1203, 2019, doi: 10.1016/j.promfg.2020.01.350.
G. Ambrogio, R. Guido, D. Palaia, and L. Filice, “Job shop scheduling model for a sustainable manufacturing,” Procedia Manuf., vol. 42, pp. 538–541, 2020, doi: 10.1016/j.promfg.2020.02.034.
A. Pechmann, J. Wermann, A. W. Colombo, and M. Zarte, “Using a semi-automated job-shop production system model to prepare students for the challenges of Industrial Cyber-Physical Systems,” Procedia Manuf., vol. 31, pp. 377–383, 2019, doi: 10.1016/j.promfg.2019.03.059.
O. Robert, Z. Hankun, L. Shifeng, and B. Borut, “Improved Heuristic Kalman Algorithm for Solving Multi-Objective Flexible Job Shop Scheduling Problem,” Procedia Manuf., vol. 17, pp. 895–902, 2018, doi: 10.1016/j.promfg.2018.10.142.
J. Mohan, K. Lanka, and A. N. Rao, “A review of dynamic job shop scheduling techniques,” Procedia Manuf., vol. 30, pp. 34–39, 2019, doi: 10.1016/j.promfg.2019.02.006.
Y. Demir and S. Kürşat Işleyen, “Evaluation of mathematical models for flexible job-shop scheduling problems,” Appl. Math. Model., vol. 37, no. 3, pp. 977–988, 2013, doi: 10.1016/j.apm.2012.03.020.
C. Silva, V. Ribeiro, P. Coelho, V. Magalhães, and P. Neto, “Job Shop Flow Time Prediction using Neural Networks,” Procedia Manuf., vol. 11, no. June, pp. 1767–1773, 2017, doi: 10.1016/j.promfg.2017.07.309.
K. C. Udaiyakumar and M. Chandrasekaran, “Application of firefly algorithm in job shop scheduling problem for minimization of Makespan,” Procedia Eng., vol. 97, pp. 1798–1807, 2014, doi: 10.1016/j.proeng.2014.12.333.
C. Silva and N. Klement, “Solving a Multi-periods Job-shop Scheduling Problem using a Generic Decision Support Tool,” Procedia Manuf., vol. 11, no. June, pp. 1759–1766, 2017, doi: 10.1016/j.promfg.2017.07.307.
A. Muthiah and R. Rajkumar, “A comparison of artificial bee colony algorithm and genetic algorithm to minimize the makespan for job shop scheduling,” Procedia Eng., vol. 97, pp. 1745–1754, 2014, doi: 10.1016/j.proeng.2014.12.326.
E. Xu, Y. Li, Y. Liu, J. Du, and X. Gao, “Energy saving scheduling strategy for job shop under TOU and tiered electricity price,” Alexandria Eng. J., vol. 61, no. 1, pp. 459–467, 2022, doi: 10.1016/j.aej.2021.06.008.
B. Rolf, T. Reggelin, A. Nahhas, S. Lang, and M. Müller, “Assigning dispatching rules using a genetic algorithm to solve a hybrid flow shop scheduling problem,” Procedia Manuf., vol. 42, no. 2019, pp. 442–449, 2020, doi: 10.1016/j.promfg.2020.02.051.
R. Joppen, J. L. Tekaat, and A. Kuhn, “Identification and structuring of benefits and expenses for evaluating the profitability of investments in digitization within production,” Procedia Manuf., vol. 33, pp. 248–255, 2019, doi: 10.1016/j.promfg.2019.04.030.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ISSN 1305-578X (Online)
Copyright © 2005-2022 by Journal of Language and Linguistic Studies