Discrete Event Simulation In The Optimization Of Emergency Departments
Abstract
Emergency departments are the most important units of the hospital network, which present daily problems in their system due to inefficient resource management. The objective of this research is to study the various problems presented by emergency departments and how they have been solved using optimization and simulation models. Based on the implemented methodology, 52 publications (books and articles) were collected, which allowed the investigation of the problems generated in the emergency departments and the models that helped to reduce or improve these problems. The most applied quantitative methodology is the simulation of discrete events and the most used software is the Arena simulator. Finally, the performance indicators used in the modeling of the system are the length of stay, arrival at the provider's door (doctor's door), rate of patients leaving without being attended and total waiting times. It is concluded that the application of the different models helps to improve the ED system, such as decreasing waiting times and reducing overcrowding.
Keywords
Full Text:
PDFReferences
A.Hussein, N., F.Abdelmaguid, T., S.Tawfik, B., & G.S.Ahmed, N. (2017). Mitigating overcrowding in emergency departments using Six Sigma and simulation: A case study in Egypt. Operations Research for Health Care. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S221169231630100X
Allyson M Best 1, C. A., Kelton, W. D., Lindsell, C. J., & 5, M. J. (2014). Using discrete event computer simulation to improve patient flow in a Ghanaian acute care hospital. Am J Emerg Med. Obtenido de https://pubmed.ncbi.nlm.nih.gov/24953788/
Antoni Juan, E. E., Valgañón, C. V., Fortea, C. G., Juan Castellanos, J. R., Milán, J. M., Luis Lores, J. U., . . . Cé, M. (2010). Impacto de implementación de medidas de gestión hospitalaria para aumentar la eficiencia en la gestión de camas y disminuir la saturación del servicio de urgencias. Dialnet. Obtenido de https://dialnet.unirioja.es/servlet/articulo?codigo=3262918
Blake, J. T., Carter, M. W., & Richardson, S. (2016). An Analysis Of Emergency Room Wait Time Issues Via Computer Simulation. Taylor Francis Online. Obtenido de https://www.tandfonline.com/doi/abs/10.1080/03155986.1996.11732308?cookieSet=1
Burns, T. R. (2017). Contributing factors of frequent use of the emergency department: A synthesis. Int Emerg Nurs. Obtenido de https://pubmed.ncbi.nlm.nih.gov/28676296/
Chinchilla, D. H., Oliveros, M. Á., & Forero, E. L. (2017). Análisis del flujo de pacientes en el servicio de urgencias del Hospital Universitario la Samaritana a través de simulación discreta. Avances Investigación En Ingeniería. Obtenido de https://revistas.unilibre.edu.co/index.php/avances/article/view/1289
Cildoz, M., Ibarra, A., & Mallor, F. (2019). Accumulating priority queues versus pure priority queues for managing patients in emergency departments. Operations Research for Health Care. Obtenido de https://www.sciencedirect.com/science/article/pii/S2211692318301309
Elalouf, A., & Wachtel, G. (2015). An alternative scheduling approach for improving patient-flow in emergency departments. Operations Research for Health Care. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S2211692314200592
Encina, K. D., & Puente, M. M. (2011). Aplicación de la simulación discreta para proponer mejoras en los procesos de atención en el área de emergencia de un hospital público. Revista de la Facultad de Ingeniería Industrial. Obtenido de https://www.redalyc.org/pdf/816/81622582008.pdf
Estrada-Atehortúa, A. F., & Zuluaga-Gómez, M. (2020). Estrategias para la medición y el manejo de la sobreocupación de los servicios de urgencias de adultos en instituciones de alta complejidad con altos volúmenes de consulta. IATREIA. Obtenido de http://www.scielo.org.co/pdf/iat/v33n1/0121-0793-iat-33-01-68.pdf
Evan Berg, A. T. (2020). Emergency Department Operations II: Patient Flow. National Center for Biotechnology information. Obtenido de https://pubmed.ncbi.nlm.nih.gov/32336328/
Farzane Asgaria, S. (2021). Addressing artificial variability in patient flow. Operations Research for Health Care. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S2211692321000047
Gardner, G., Gardner, A., Middleton, S., Considine, J., Fitzgerald, G., Christofis, L., . . . O'Connell, J. (2018). Mapping workforce configuration and operational models in Australian emergency departments: a national survey. Aust Health Rev. Obtenido de https://pubmed.ncbi.nlm.nih.gov/28514641/
Humberto, R.-Z. J., Jaen-Posada, J. S., Espinal Piedrahita, J. J., & Zapata Florez, P. A. (2018). Emergency Department Overcrowding: A Four-Hospital Analysis in Medellín and a Strategy Simulation. Revista Gerencia y Políticas de Salud. Obtenido de http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S1657-70272018000100130&lng=es&nrm=is&tlng=en
Jimenez-Barragan, M., Rodriguez-Oliva, M., Sanchez-Mora, C., Navarro-Bustos, C., Fuentes-Cantero, S., Martin-Perez, S., . . . An. (2021). Emergency severity level-3 patient flow based on point-of-care testing improves patient outcomes. Clin Chim Acta. Obtenido de https://pubmed.ncbi.nlm.nih.gov/34537218/
Joanne E Coster, J. K. (2017). Why Do People Choose Emergency and Urgent Care Services? A Rapid Review Utilizing a Systematic Literature Search and Narrative Synthesis. Acad Emerg Med. Obtenido de https://pubmed.ncbi.nlm.nih.gov/28493626/
Konrad, R., Sotto, K. D., Grocela, A., McAuley, P., Wang, J., Lyons, J., & Bruin, M. (2017). Modeling the impact of changing patient flow processes in an emergency department: Insights from a computer simulation study. Operations Research for Health Care. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S2211692313000052
Lopez, F. R., & Fernandez, F. J. (2017). Ciencia Administrativa Y Gestión Sanitaria. La casa del libro. Obtenido de https://latam.casadellibro.com/ebook-ciencia-administrativa-y-gestion-sanitaria-ebook/9788416956517/5082272
Luo, L., Zhang, Y., Qing, F., Ding, H., Shi, Y., & Guo, H. (2018). A discrete event simulation approach for reserving capacity for emergency patients in the radiology department. BMC Health. Obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003191/
Mason, S., Mountain, G., Turner, J., Arain, M., & Weber, E. R. (2014). Innovations to reduce demand and crowding in emergency care; a review study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. Obtenido de https://sjtrem.biomedcentral.com/articles/10.1186/s13049-014-0055-1
Oh, C., M.Novotny, A., L.Carter, a., K.Ready, R., D.Campbell, D., & C.Leckie, M. (2016). Use of a simulation-based decision support tool to improve emergency department throughput. Operations Research for Health Care. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S2211692314200579
Paloma Martínez, J. M., & Cavazos, P. N. (2015). Mejora en el Tiempo de Atención al Paciente en una Unidad de Urgencias Mediante la Aplicación de Manufactura Esbelta. Información tecnológica. Obtenido de https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642015000600019
Palomera, A. M., Ángeles, Á. G., & León, S. V. (2010). Reducir tiempos de espera de pacientes en el departamento de emergencias de un hospital utilizando simulación. evistas científicas de Acceso. Obtenido de https://www.redalyc.org/articulo.oa?id=81619989010
Pérez-Ciordia, I., F, A. B., C, G.-G., Fernández-Martínez, & Aguinaga, I. (s.f.). Identificación de problemas y propuestas para mejorar la atención de las urgencias extrahospitalarias en Navarra: un estudio Delphi. Anales del Sistema Sanitario de Navarra. Obtenido de https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272011000300006
Pryce, A., Unwin, M., Kinsman, L., & McCann, D. (2021). Delayed flow is a risk to patient safety: A mixed method analysis of emergency department patient flow. Int Emerg Nurs. Obtenido de https://pubmed.ncbi.nlm.nih.gov/33360361/
Ratnovsky, A., Rozenes, S., Bloch, E., & Halpern, P. (2021). Statistical learning methodologies and admission prediction in an emergency department. Australasian Emergency Care. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S2588994X20301147
Stanford, D. A., Taylor, P., & Ziedins, I. (2013). Waiting time distributions in the accumulating priority queue. Queueing Systems. Obtenido de https://link.springer.com/article/10.1007/s11134-013-9382-6
Taype-Huamaní, W., Chucas-Ascencio, L., Cruz-Rojas, L. D., & Amado-Tineo, J. (2019). Tiempo de espera para atención médica urgente en un hospital terciario después de implementar un programa de mejora de procesos. Anales de la Facultad de Medicina. Obtenido de http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832019000400005
Varney, J., Weiland, T. J., & Jelinek, G. (2014). Efficacy of hospital in the home services providing care for patients admitted from emergency departments: an integrative review. Int J Evid Based Healthc. Obtenido de https://pubmed.ncbi.nlm.nih.gov/24945961/
Velásquez-Restrepo, P. A., Rodríguez-Quintero, A. K., & Jaén-Posada, J. S. (2011). Quantitative methodology for emergency service optimization: a review of past literature. Obtenido de http://www.scielo.org.co/pdf/rgps/v10n21/v10n21a12.pdf
WaleedAbo-Hamad, & AmrArisha. (2012). Simulation-based framework to improve patient experience in an emergency department. European Journal of Operational Research. Obtenido de https://www.sciencedirect.com/science/article/pii/S0377221712005693
Yang, K. K., WeiLam, S. S., M.W.Low, J., & HockOng, M. E. (2016). Managing emergency department crowding through improved triaging and resource allocation. Operations Research for Health Care. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S221169231420035X
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ISSN 1305-578X (Online)
Copyright © 2005-2022 by Journal of Language and Linguistic Studies